Friday, April 12, 2019

Physico-Chemical Qualities Essay Example for Free

Physico-Chemical Qualities Essaya) Describe the physico-chemical qualities of irrigate that are important to aquaculturists. Aquaculture layabout be defined as the racy-density production of lean, shellfish and plant forms in a controlled environment. Stocking rates for high-density aquaculture are typically thousand fold greater than wild environments. Modern fish culturists employ both open and closing curtain brasss to raise fish. Open systems, such as, the raceways are characterized by rapid turn all over of trunk of water. Closed systems are frequent in pond culture. Closed aquaculture systems do non have rapid turnover of water, still do not have a high surface to volume ratio facilitating exchange of gases, nutrients, energy and so forth with the surroundings. Water quality for aquaculturists refers to the quality of water that enables successful propagation of the desired organisms. Physico-chemical parameters of water include1. AlkalinityAlkalinity relates t o the talent of the water to accept protons and is a measure of the waters buffering capacity. There are no straightaway effects of alkalinity on fish and shellfish, however, it is an important parameter due to its indirect effects, including the protection of aquatic organisms from major(ip) changes in pH. In secondary alkalinity waters, where carbon dioxide and dissolve carbonates are at low concentrations, photosynthesis whitethorn be inhibited, thus restricting phytoplankton growth. Levels preceding(prenominal) 175 mg CaCO3/L reduces natural food production in ponds which, in turn, leads to a decrease in optimal production. Salt water is s escapely alkaline and has a strong buffering capacity so alkalinity is not usually of concern for most seawater and brackish water aquaculturists.2. Biochemical atomic number 8 demand ( and COD)It is a measure of the amount of type O required by bacteria, alga, sediments and chemicals over a set period of time. BOD is of importance in aquaculture be front microbial degradation of constituent(a) upshot is a major sink for fade out group O, a highly important parameter for aquaculture. Aquaculture operations should not utilise waters which are polluted with chemicals and/or excessive nutrients. Increasing directs of BOD indicate organic pollution which is a cause of concern for aquaculturists. The amount of BOD needed for a particular system deal be estimated by taking intoaccount factors such as dissolved. Oxygen requirements of the culture species, the gun occlusion of pond aeration, seasonal temperature fluctuations, expected photosynthetic activity, and oxygen solubility.3. Carbon dioxideTheir presence is important for the buffering capacity of the water. The aim of carbon dioxide in the water is related to photosynthetic activity of aquatic plants and respiration of these plants and aquatic animals, as well as bio- oxidisation of organic compounds. Dissolved carbon dioxide forms carbonic acid, causing a drop in pH. At equilibrium, freshwater contains about 2.0 mg/L carbon dioxide and seldom rises above 20 to 30 mg/L. High concentrations of carbon dioxide have a narcotic effect on fish and plain higher concentrations may cause death however, such concentrations seldom occur in nature. The direct inauspicious effects can occur when there is an excess of free CO2, especially in waters low in dissolved oxygen. This latter situation can occur when too much free CO2 is utilized for photosynthesis of phytoplankton, or when water is vigorously aerated with CO2 free air. Free CO2 concentrations infra 1 mg/L refer the acid-base balance in fish blood and winds and cause alkalosis. most(prenominal) aquaculture species will survive in waters containing up to 60 mg/L carbon dioxide provided that dissolved oxygen concentrations are high.4. disguise and appearance of waterThese are not highly objective measurements but many fish farmers and crustacean farmers attach a lot of significance to these two properties of pond water. Color is a result of the interaction of incident light and impurities in the water .There are tercet ballpark causes of water coloration and variations in water appearance * suspension of silt and clay particles* material growth of plankton, particularly microalgae * suspension of humic acids and other organic acidsThe color of the water, actually refers to turbidness due to significant silt and clay particle accumulation, or growth of phytoplankton and zooplankton. This type of water coloration may be beneficial in tank andcage culture as it shades fish and prevents sunburn as well as reducing plant biofouling. It is reported that impending oxygen shortages in the water can very much be detected by changes in colour. Although high colour may shade fish and impede algal growth, it is usually due to tannins. These are phenols which bind with protein and at high levels may affect fish respiration, particularly with sensitive fish species.5. Dissolved oxygenDissolved oxygen is the most unfavorable water quality protean in aquaculture. Anoxia occurs when dissolved oxygen levels in the environment decrease to the point where aquatic life can no longer be supported. few species are more patient of to low levels of oxygen than others. It was noted that the amount of oxygen required by aquatic animals is quite variable and depends on species, size, activity (levels increase with activity), water temperature (doubles with every increase of 10C), condition (lean fish sustain less than fat fish), DO concentration, etc. The DO concentration can fluctuate in chemical reaction to photosynthesis of aquatic plants and respiration of aquatic organisms. The amount of DO required also depends on partial insisting of dissolved oxygen in the water and its ability to exchange across gill membranes. DO level in water should be above 5mg/L In ponds, tanks and other enclosed culture systems, automatic aeration can be used to lift dis solved oxygen levels, while water movement from currents and tides assists in open culture systems. Pure oxygen (oxygenation) may be used to supplement dissolved oxygen levels, particularly in intensive culture systems. The most common cause of low DO in an aquaculture operation is a high concentration of biodegradable organic matter in the water, resulting in a high BOD. This problem is further exacerbated at high temperatures.6. Gas super saturation (total gas pressure)overseer saturation of dissolved gas occurs when the pressure of the dissolved gas (total gas pressure TGP) exceeds the atmospheric pressure. TGP refers to the congeries of the partial pressures of dissolved gases in the water (i.e. oxygen, nitrogen and carbon dioxide). Oxygen supersaturation Nitrogen supersaturation Carbon dioxidesupersaturation explanation Total gas pressure is not above saturation level. Total gas pressure is above saturation level Condition of higher levels of dissolved gases in water due to e ntrainment, pressure increases, or heating. Mechanism Oxygen displaces nitrogen in liquid diffusion Reason why Pure oxygen is used to oxygenate -Situation develops when water and air is mixed under pressure.-Situation develops when water is heated When there is high phytoplankton activity though respiration at night. Results up to 200300% can be tolerated if oxygen is used directly or duringphotosynthesis (when air is used, nitrogen becomes the main component and problems can occur). It can cause massive distension of the swim bladder of salmonids, although the mortality is usually low. gas bubble trauma which may cause acute or chronic problems,especially in eggs, larvae and juveniles. levels above 20 ppm can lead to stress. mortalitymay not occur, even at levels of 30-40 ppm, High carbon dioxide levels in fish transport systems (where ventilation is absent) can inhibitoxygen uptake.7. roughnessTotal hardness primarily measures the concentration of all metal cations (usually dom inated by atomic number 20 and milligram in freshwater) in the water. Soft water is usually acidic while hard water is by and large alkaline. In soft waters, carbonate and bicarbonate salts are in short supply. Hard water has been effectuate to reduce the poisonousity of several heavy metals (calcium and magnesium) as well as ammonia water and the total heat ion. Some aquacultural species have a specific requirement for calcium, for bone formation in fish and exoskeleton formation in crustaceans. Calcium is also necessary for proper osmoregulation, and the calcium ion loosely reduces the toxicity of hydrogen ions, ammonia and metal ions. High calcium levels in freshwater can inhibit phytoplankton growth however, blue-green algae are known to thrive in harder water (high Ca2+) which can influence productivity of the pond water. Meade (1989) recommended a range among 10 and 400 mg/L for aquaculture.8. pHThe term pH refers to the hydrogen ion (H+) concentration in water moregene rally, pH refers to how acidic or basic water is. In aquaculture, low pH is often a consequence of sulfuric acid formation by the oxidation of sulphide-containing sediments. Note that acidification of highly alkaline water can increase the free carbon dioxide concentration, resulting in CO2 toxicity rather than pH imbalance. In addition, acid water tends to dissolve metals more readily. High pH in aquaculture is commonly a result of excess photosynthesis in waters with high alkalinity and low calcium hardness. pH can indirectly affect aquaculture species through its effect on other chemical parameters. mortified pH* reduces the amount of dissolved inorganic phosphorus and CO2 available for phytoplankton photosynthesis. * results in the solubilisation of potentially toxic metals from the sediments Hugh pH makes the toxic form of ammonia more prevalent.Meade (1989) recommended that pH be maintained at between 6.5 and 8.0 for all aquaculture species.In freshwater, pH can change quickl y due to the amount of carbon dioxide added or removed during plant growth. In culture systems, particularly recirculation systems, the pH may be reduced (more acidic) by the production of metabolites. Buffering is, therefore, important in such systems. Seawater, in general, resists changes in the pH values.NOTE pH can change by the hour as a function of photosynthesis which removes carbon dioxide. This is particularly the case in pond-based culture systems.9. salinity (total dissolved solids)Salinity is the main measure used in aquaculture, as it influences the water and salt balance (osmoregulation) of aquatic animals. Estuarine waters may range from 0.5 to more than 30 ppt often depending on the depth of the sample marine waters range between 30.0 to 40.0 ppt. Salinity directly affects the levels of dissolved oxygen the higher the brininess, the lower the dissolved oxygen levels at given water temperature. Like temperature, salinity is an important limiting factor in the distrib ution of many aquatic animals. Salinity requirements can variegate for particular species depending ontheir life cycle stage. Salinity also affects the temperature requirements of some species. Freshwater organisms have body fluids more concentrated in ions than the surrounding water, meaning that they are hypersaline or hypertonic to the environment. These animals tend to call for water which they must excrete while retaining ions. Saltwater species have body fluids more dilute in ions than the surrounding water they are hyposaline or hypotonic to their environment. They must excrete ions and uptake water continually. Salinity tolerance varies significantly between species and some species have wider tolerances than others. 10. Suspended solids and turbidityThere are three basic types of suspended solidsphytoplankton, zooplankton and bacterial bloomssuspended organic and humic acidssuspension of silt and clay particles all influence the level of turbidity (turbidity increases wit h suspended solids) and scatter light, restricting penetration into water. In aquaculture ponds, less light penetrating to the bottom inhibits growth of troublesome filamentous algae and aquatic weeds. This turbidity is often deliberate in centimetres using a secchi disc. Typically, if the secchi disk reading is below 10 cm water turbidity is excessive. If turbidity is due to the presence of phytoplankton, there is likely to be a problem with dissolved oxygen concentrations when the light level decreases below the photosynthetic compensation level. Conversely, if turbidity is due to silt/clay or organic matter, planktonic productivity will be low.Suspended solids can cause gill irritations and tissue damage, which increases the stress levels of aquatic animals. Turbid waters can also shield food organisms and clog filters. The utilize of mechanical aeration tends to create water currents which maintain soil particles in suspension and perpetuates the turbidity of the pond. Problem s of off-flavors in fish and crayfish are less common in turbid ponds. (except where algae cause the turbidity). The effect of this criteria varies advantageously between species. Meade (1989) recommended a level below 80 mg/L for aquaculture species. Marine species (e.g. snapper) are generally less tolerant, so therecommended guideline is

No comments:

Post a Comment